Trapping channel block of NMDA-activated responses by amantadine and memantine.
نویسندگان
چکیده
We investigated the mechanisms by which the antiparkinsonian and neuroprotective agents amantadine and memantine inhibit responses to N-methyl-D-aspartic acid (NMDA). Whole cell recordings were performed using cultured rat cortical neurons or Chinese hamster ovary (CHO) cells expressing NMDA receptors. Both amantadine and memantine blocked NMDA-activated channels by binding to a site at which they could be trapped after channel closure and agonist unbinding. For neuronal receptors, the IC50s of amantadine and memantine at -67 mV were 39 and 1.4 microM, respectively. When memantine and agonists were washed off after steady-state block, one-sixth of the blocked channels released rather than trapped the blocker; memantine exhibited "partial trapping." Thus memantine appears to have a lesser tendency to be trapped than do phencyclidine or (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[1,d]cyclihepten-5,1 0-imine (MK-801). We next investigated mechanisms that might underlie partial trapping. Memantine blocked and could be trapped by recombinant NMDA receptors composed of NR1 and either NR2A or NR2B subunits. In these receptors, as in the native receptors, the drug was released from one-sixth of blocked channels rather than being trapped in all of them. The partial trapping we observed therefore was not due to variability in the action of memantine on a heterogeneous population of NMDA receptors in cultured cortical neurons. Amantadine and memantine each noncompetitively inhibited NMDA-activated responses by binding at a second site with roughly 100-fold lower affinity, but this form of inhibition had little effect on the extent to which memantine was trapped. A simple kinetic model of blocker action was used to demonstrate that partial trapping can result if the presence of memantine in the channel affects the gating transitions or agonist affinity of the NMDA receptor. Partial trapping guarantees that during synaptic communication in the presence of blocker, some channels will release the blocker between synaptic responses. The extent to which amantadine and memantine become trapped after channel block thus may influence their therapeutic effects and their modulation of NMDA-receptor-mediated excitatory postsynaptic potentials.
منابع مشابه
Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity.
Excessive activation of NMDA receptors is thought to mediate the calcium-dependent neurotoxicity associated with hypoxic-ischemic brain injury, trauma, epilepsy, and several neurodegenerative diseases. For this reason, various NMDA antagonists have been investigated for their therapeutic potential in these diseases, but heretofore none have proven to be both effective and safe. In the present s...
متن کاملAmantadine inhibits NMDA receptors by accelerating channel closure during channel block.
The channel of NMDA receptors is blocked by a wide variety of drugs. NMDA receptor channel blockers include drugs of abuse that induce psychotic behavior, such as phencyclidine, and drugs with wide therapeutic utility, such as amantadine and memantine. We describe here the molecular mechanism of amantadine inhibition. In contrast to most other described channel-blocking molecules, amantadine ca...
متن کاملPii: S0028-3908(98)00059-8
The NMDA receptor antagonistic effects of budipine were assessed using concentrationand patch-clamp techniques on cultured striatal, hippocampal, cortical and superior colliculus neurones. Inward current responses of striatal neurones to NMDA (200 mM) at −70 mV were antagonized by budipine in a concentration-dependent manner (50% inhibitory concentration (IC50) 59.4910.7 mM, n=17) with 24 times...
متن کاملCNS Drug Reviews
Memantine has been demonstrated to be safe and effective in the symptomatic treatment of Alzheimer’s disease (AD). While the neurobiological basis for the therapeutic activity of memantine is not fully understood, the drug is not a cholinesterase inhibitor and, therefore, acts differently from current AD therapies. Memantine can interact with a variety of ligand-gated ion channels. However, NMD...
متن کاملThe N-methyl-D-aspartate receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes antagonise 5-HT(3) receptor currents in cultured HEK-293 and N1E-115 cell systems in a non-competitive manner.
The type 3 serotonin (5-HT(3)) receptor is a ligand-gated ion channel. In concentration-clamp experiments, we investigated the effects of the uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists memantine, amantadine and MRZ 2/579 on 5-HT receptors stabley expressed in HEK-293 cells and on native 5-HT(3) receptors in the N1E-115 cell line. All agents antagonized serotonin (10 microM)-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 77 1 شماره
صفحات -
تاریخ انتشار 1997